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This paper is concerned with the stability of the stationary motions of systems with two 
cyclic coordinates, and is based on the investigation of Rumiantsev [l]. Some properties 
of bifurcation are established for a particular type of sections of the surface of stationary 

motions. The particular case of the bifurcation pointed out in Ishlinskii’s [‘2] is investi- 

gated. 
1, Let us first consider some questions of the theory of bifurcation [3 and 41, which are 

necessary further on when the theory is generalized to the case in which the potential 

energy depends on two parameters, 

Let the system have k degrees of freedom; x = jlxl,. . . ,xk (1 is a vector in configu- 
ration space J? ; p1 and _? a are real parameters varying on the axes PI , Pa ; p = IIp1,pall 
is the corresponding vector of the P =PrP, surface ; fl (x, ~1, pz) is the potential 

energy which is assumed to be analytic. 

The equation of equilibrium 
grad, n (5, PI, PJ = 0 (1.1) 

determines in the space RP the surface of equilibria B (see [l]). The smooth surfaces 
C, c B are called branches of the surface B . The point of bifurcation of the equilib- 

ria is defined, as was done in [5], as the point of branching of the solutions of the equi- 
librium equation. The point (X0, PO) of the equilibrium surface is called a point of 
bifurcation of the equilibria, if in any (no matter how small) neighborhood of this point 

there exists at least two points (X’ ,p *), (X", p l ) , belonging to the equilibrium surface 

and corresponding to one value p l of the parameter. A necessary (but not sufficient) 

condition for some point of the surface B to be a point of bifurcation is that the Hessian 
of the potential energy be equal to zero at that point [4]. 

The set r of the points of bifurcation is called the bifurcation curve. In particular the 
lines of intersection of the branches of the surface B belong to that curve. 

The law of variation of stability for fixed values of p is satisfied on the surface B (see 

e.g. C41). 
In some cases it is worth considering not the entire surface B , but only some curve L 

located on it, and which is the section of the surface B by the (k + l)-dimensional surface 

given by the smooth function 
Pa = Pa (2, P3 (1 a 

(Or p1 =pl(X,pa) ; such a notion is useful later on). If (1.2) does not depend on x , 
the section is said to be cylindrical (in that case (1.2) determines a (k+ l)-dimensional 
“cylindrical” surface, the “generatrices” of which are orthogonal complements of the 

plane P ). 
Substituting (1.2) into (1.1) we get the projection L* of the curve L on the subspace 
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J%?L . By stable (unstable) points of L* we shall mean projections of stable (unstable) 

points of the curve L . There will result a certain distribution of the stability on2 . 
Thereby it is not known beforehand, whether it corresponds to the laws [3 and 4~ (9s on 
the equilibrium curve of systems with one parameter). If such a correspondence exrsts 
formally, we shall say that there exists a “Poincari distribution”or a “regular distribu- 
tion” . 

ft is easy to see that for a cylindrical section _& , the distribution of the eq~lilibrium 

on L’ is a Poincar& distribution. Indeed, in such a case the points of the curvel” are 
stationary points of the function fi* (z, pr) = IJ (5, pl, p&-Q) for fixed p1 . i.e. 
the curve L’ coincides with the equilibrium curve for the potential energy fl *(x,P~), 

and the distribution of the equilibrium coincides also with them, This leads to the clas- 

sical case of one parameter, The section which has several branches on the bifurcation 

curve is not an exception either, in spite of the fact that on such branches and on corre- 
sponding branches of the curve L’, the Hessian of the potential energy is identically 

equal to zero. This case is considered in [5]. 

If L is not a cylindrical section, then the stability distribution on L* can be not regu- 

lar (in the accepted sense). 
This follows from the following reasoning. IfL is not a cylindrical section, then to 

points~~~, Mn’,... on L' for a fixed value of pl, there corresponds points & , Mn, . , . 

on L for different values of the‘vector p (only the coordinate p1 of this vector is fixed). 

Thus the law of the variation of stability may not be satisfied on L* C RP, , while at 
the same time it is satisfied (for fixed p) on L in the entire space J?P. 

Using the cylindrical sections, it is easy to show (taking [5] into consideration) that 
the boundary of the regions of stability and instability in B belongs to the bifurcation 

curve r . 
Note 1.1. If the number of parameters is equal to 778 > 2, then 6’ is an mdimen- 

sional surface and r a manifold of dimensions s??l - 1 . We may consider sections of 

different dimension. 

2. Let us consider a nongyroscopically coupled conservative system with k positional 

and two cyclic coordinates. 

1”. There exists an analogy [l] between the theory of bifurcation of the stationary 
motions of such systems and the theory of bifurcation of equilibria, In agreement with 

that analogy, the notations of Section 1 take the following meaning: X is a k-dimen- 

sional vector of the position coordinates;p is a two-dimensional vector of the general- 

ized impulses corresponding to the generalized velocities of the cyclic coordinates (“) ; 
3 is the surface of stationary motions in the (k t 5)-dimensional space&? determined 

by Eq. grad,W (x, p) = 0 (2-l) 
where w is Routh’s potential (reduced potential energy) &l and S] 

Vk’ = l?(s) + l/s2 bij (5) P@j = fI $. ‘/z (BP, P) (2.2) 

Here II (x) is the potential energy ;A =/laid/ (1 = , j=l, 2) is the kinetic energy 
matrix, corresponding to transformations of the cyclic velocities ; B= 11 by /I =A’“l is its 

l ) These impulses and velocities will be called cyclic for short. Cyclic impulses on the 
motions of the system are equal to constants, which will be denoted as the impulses by 
PrsPa* 
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inverse matrix. 

We shall also introduce the notation u) = iI u)l , UJ,l/ for the vector of the cyclic coor- 

dinates, which varies on the surface Q (CO,, E f2r, wa E !&,). 
In gyroscopically noncoupled systems, the cyclic impulses and cyclic velocities are 

connected by the relation [S] p ==A (5) w (0 = B (4 P) (2.3) 

The cyclic coordinates are constant on stationary motions, thus it is possible to talk 
about the surface B, of the stationary motions in the space J? fi ; the cyclic velocities 

W1 , @.I 2 [‘7] appear as parameters of this surface. However. as is shown in ll.1, the stabi- 

lity distribution on B, , is not a Poincare’ distribiution. The change from B to .& can 

be treated as the change of variables (2.3). 

N o te 2.1 (see Cl]). In a gyroscopically coupled system, the surface B is also de- 

termined by Eq.(Z. l), and the surface B, is connected with it by the relation (2.3). 

But the stabiliq d~tribution on these surfaces can be differentiated from the dis~bution 
found in the reduced system when the gyroscopic forces are not taken into account: on 

the segments having an even degree of instability, it is possible to have a gyroscopic 

stabilization. 

2”. 
sake 

Let us consider the cylindrical section L, of the surface &. Let it be, for the 
of definiteness, the section by the hyperplane (‘) 

0s --hoi fh is a number) (2.41 
The section L c B in the space AP corresponds to the section &,, (according to 

(2.3)). We shall denote, respectively, by L,* and L* the projection of the section L, on 
the subspace J?&, and that of the section L on the subspace !?pl . The curves L,’ and 
L* are connected by the relation 

Pl = (%I 64 + h, @I:>) 01 (2.5) 

Now, the section L is not cyclindrlcal, thus the passage from L,’ toL” according to 
(2.5) leads, in general, from an nonregular distribution (in the accepted sense) to another 

nonregular one, in. spite of the fact that it is the impulse $71 , and not the velocity which 

is a parameter on L” (the passage from B, to B according to (2.3) leads from a nonre- 
gular distribution to a regular one p]) _ 

Further on we shall consider those laws of the Poincare) distribution which are valid 

not only on a cyclindrical section of the surface B, but also (under certain conditions), 
on a cylindrical section of the surface Bu,, and in systems with one cyclic coordinate on 

the curve B, . 

3’. Let the malformation (2.3) be nondegenerate for x= 0 

det A (0) # 0 (2.6) 

For systems with one cyclic coordinate (for them A is a number) the condition (2.6) 

means that the kinetic energy, with respect to W , is not identically equal to zero, on the 
stationary motion x = 0 ; this condition is practically always fulfilled (in the opposite 

case, the problem degenerates into a static one, as, for instance, the problem of the stabi- 
lity of the trivial stationary “motion” of a mass point suspended on a string). 

From [3 and 53 and what has been said above follow the following assertions. 

*) It is assumed that hyperplane (2.4) is not tangent to the surface of stationary motions, 
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1) Let in the system with one cyclic coordinate, the curve B contain a trivial branch; 

the curve X = 0 , and let Eq. (2.6) be satisfied. Then the follov%g statements are valid 
for the curve 8, : 

a) the points of stability change on the trivial branch are bifurcation points; 

b) the isolated bifurcation points on the trivial branch for cU# 0 are either points of 

stability change, or are located inside the domain of instability. 

2) Let the cylindrical section L, of the surface Bw by the hyperplane (2.4) contain 

the trivial branch x = 0 , and assume the condition (2.6) is fulfilled. Then the statements 
(a) and (b) are satisfied on the projections L,* c RQ, , of that section. 

In fact, it is easy to see that the statements (a) and (b) are satisfied in fiP(see [5]) . 

Furthermore, in systems with one cyclic coordinate, when the condition (2.6) is satisfied 

there is a one to one correspondence between the points of bifurcation of B which are 
nonlimiting [3 and 51 and the nonlimiting points of bifurcation of BW. But on the trivial 

branch x = 0 all the points of bifurcation are nonlimiting. Hence follows the assertion 

(1). Taking the last foot-note into consideration, it is also easy to prove the assertion(2). 

N o t e 2.2. In the assertion (2) we considered the cylindrical section by the hyper- 
plane (2.4). however, the statement (a) is valid also for arbitrary cylindrical sections. 

In connection with the statement (b) we shall note that for cylindrical sections other 

than (2.4). the Routh potential does not reduce, in general, to the form (2.4) of [5]. For 
such sections the statement(b) is valid in the case in which there are an odd number of 

branches passing through the points of bifurcation under consideration (under certain con- 
ditions [4 and 51 which are usually met in practical problems). Usually, at a point of 

bifurcation, the branch x = 0 intersects with a nontrivial branch. 

4”. Let us consider the case of a transformation (2.3) which is degenerate for X= 0 

de1 A (0) = 0 (2.7) 
It has a practical interest in systems with two cyclic coordinates when rank A (0) = 1. 

Expressions (2.2). (2.1) are indefinite for .X = 0 . Since A (0) is a symmetric matrix 
of second order, the eigenvector g of this matrix is orthogonal to the eigenvector of the 

adjoint matrix A" (0) . Since furthermore, the matrix A (0) is sign-definite, the quad- 

ratic form (A” (O)$Y .p) is equal to zero, if and only if, p E g. Thus, the quadratic 

form 

which enters (2.2) can have a finite limit for X 0 only when p E g (see e. g. in [6]). 
The same applies to the expression grad, w((x,p) . It follows that for the conditions 

(2.7) either there are no stationary motions x = 0 , p # 0 , or the surface B contains the 
line g and only it for x = 0 . The entire plane X = 0 , corresponds to that line, in the 

domain RR . Hence it is clear that in the case (2.7) the statement (b) of the Subsection 
3” may be invalid on the cylindrical sections L, of the surface Bw (but it obviously 

remains also valid in the case (2. ‘7) on the cylindrical sections of the surface B) . 

5”. As an illustration of Subsections 2” to 4*, we shall investigate the surface B of 

Fig. 1. which corresponds approximately to the surface of the stationary motions of an 
elongated body with a fixed point in the case of Lagrange. Here 8 is the nutation angle 

0 s 8 5 ill (8 = 0 if the center of gravity is situated below the point of support on the 
vertical line going through that point) ; p1 and pa are cyclic impulses corresponding 
to the velocities Lu1 = $’ and W 2 = cp l of the precession and natural rotation respectively 

(the part of the surface corresponding to pz >,ol is not shown). The linear surface 8’ 
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(cross-hatched in Fig. 1) is determined by the condition W,= 0 ; L represents the corre- 

sponding section. On Fig.2 is shown the projection L’ of this section on the ‘plane 8~1 . 

The little circles mean that the curves L and L” are 
stable (*) . The fact that Fig.2 seems to contradict 

the law of stability variation is explained by noticing 

that the section L is not cylindrical. As can be seen 

4 
- 

in Fig. 1, there is no such contradiction on cylindrical 

sections in the space 8plpz . In the space eW,W,, 

the statement (b) of the Subsection 3’ obviously does 

not hold on the cylindrical section by the plane Wo= 0. 

Fig. 1 
This is explained by the degenerate nature of the ma- 

trix A for 8 = 0 (cf. relation (22) in [S]). 
L9 

-----_--- 3, Let us consider system of the paper [2]: an elon- 

gated body with axial symmetry, suspended on an abso- 

lutely flexible inertialess string, the top end of which 

rotates freely in a vertical bearing. and its low end 

(the point 0) is tied to the axis of symmetry of the 

body above its center of gravity (point c ). We shall 

Fig. 2 
take the point 01 in which the string comes out of the 
bearing as the origin of a fixed orthogonal system of 

coordinates O,~TJ< which has its axis 6 directed vertically upwards. The point c is 

taken as the origin of the two systems cc’?l’&’ and CX yz . The axes of the first 
are directed parallel to the axes 5, 7, 6 ; the axes of the second (rigidly fixed to the 

body) are considered as the principal central axes of inertia of the body whereby the axis 
Z is directed along the axis of symmetry towards the point 0. 

The given mechanical system has five degrees of freedom. Let us consider the two 

systems of generalized coordinates 
1) a, P, 6, $, cp; 2) a, 3, 6, Y, cp (3.1) 

Here 8 , $ , Cp are the an 
B 

les of nutation of the precession and the proper rotation of 
the body in the system cz q’<‘, CX~Z ; cx and $ are the angles of nutation and pre- 

cession of the string as a rigid body in the system 0157 6 (the axis of the string is 

assumed to be directed from 0 to 01) ; y = @ - $ . It is assumed that 0 Qt s $I7 ; 
- flT 5 8 4 ill. We note that the angles $ and /!l correspond exactly (including their 
signs) to the angles between the axis ‘TJ and the respective projections on the horizontal 
plane of the axis Z and the axis of the string [S]. It is easy to verify that in the system 
of coordinates (3.11) there is one cyclic coordinate cp ; in the system of coordinates 

(3.1 a) there are two cyclic coordinates : /3 and C&I , i.e. the maximum possible number. 

Therefore we shall use the system of coordinates (3.12) in the future. The mechanical 
system under consideration is gyroscopically coupled. 

In p and 81 (with the notation introduced above) the velocity 8’ of the cyclic coor- 
dinate fl is chosen as a parameter. and the investigation is concerned with the stationary 
motions on which the velocity q’ of the other cyclic coordinate is equal to zero. Thus 

one considers the cylindrical section of the surface Bw of the stationary motions, given 

l ) Compare with example from [l and 73 which is obtained from the case under consider- 
ation by taking wz = 0 . 
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by the condition q’ - 0 . The curve (6) of p] represents the projection of this section 

on the subspace aep l . It has a peculiarity : the trivial branch does not lose its stability 

in the points of bifurcation (i. e. the statement (b) of Section 2 does not hold on it). This 

peculiarity is retained also when the parameter is not the velocity 8’ but the correspond- 

ing impulse pB . It is shown further on, that this peculiarity is obtained because the trans- 
formation (2.3) is degenerate on the trivial motion ; the fact that it is also retained for 

the parameter pg can be explained by observing that the condition Cp’ = 0 yields in the 

RP space a noncylindrical section. 

Let us introduce the following nondimensional parameters and functions : 

(1) (CL, 0, y) = I)I~ sill”a ! 11% sill2 0 .+ 21hr~ sin a sin 0 cos y 

Here a represents the length of the string (between 01 and 0) ; 12 is the distance 
between the points 0 and c , (A > a ) ; M is the mass of the body ; g is the acceleration 

due to gravity ; A , c (A > c) are the principal cenral moments of inertia of the body, 
the equatorial and the axial, respectively ; &, andXpV are the cyclic impulses ; WI , W2, 
p1 and pa are nondimensional cyclic velocities and impulses. Further on, all expres- 

sions are written with accuracy up to the normalizing factors. 
The matrix of the part of the kinetic energy which appears as a quadratic form of the 

cyclic velocities, its inverse matrix and Routh’s potential have, respectively, the following 

form : 
I !I "i j il = /I v co9 0 + sins6 :- CD vcose 

vcostl V II 

‘I 2 11 *ii 11 = ,in2’, .- tll) 
/I 

V - vcos 8 
_ v cos 0 2, c0s2e f sin20 -1 cD I/ 

11. = - ojL CIBs a -:- n cos e) _i- 
(pl -tacos e)2 

qsin2e +@) + '& 

(3.2) 

(3.3) 

The equations of the stationary motions which determine the surface B in the space 

RP of the variables a,, 8 , y ; p1 ,p2 are 

arl~- ,,L sin a _ Q, (pl - p2 cus e)2 - ~. 
:! (sin20 .;- CD)2 

:O 
da (3.4) 

i)ll’ ~--P~COS e) CD, 
de 

~ ,I sin 0 + sin 0 (PI - ~2 0)s e) 

(sin2 e q2- 
I 

pp -plc~~e -f- p2f~ - 
2 sin e 1 

= 0 (3.5) 

011’ _ .: - 
(pl - p2 cos e)* CD, 

= 
u 

dT 2 (sin* 0 + @)z (3.6) 

Here U),, U+, and Q,..are the partial derivatives of UJ with respect to CI , 8 and y . 
It follows from (3.4), (3.5) that there are no stationary motions on which a = 0, 6 # 0. 

y # 0 nor stationary motions on which 8 = 0, a # 0, y # 0 ; from (3.6) it follows that 
for Ct # 0, 8 # 0 the stationary motions surface lies in the subspace y = 0 (this was pointed 

out in [S]). When a = 0 = 0 there is a practical reason to search the stationary motions 
for y = 0, which is done below. 

For U = 8 = 0, the matrix (3.2) is degenerate, and Expressions (3.3) to (3.6) are inde- 
terminate. These indeterminate forms can be evaluated on the eigenvector p1 =pz of 
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the matrix (3.2). To wit, taking into consideration that @@. , 8 .y) is a sign definite 

function for any Ct. 8 , y , it is easy to verify that the limits* of Expressions (3.4) to(3.6) 
and the second factored Expression of (3.3) are equal to zero for p1 =J&, a-+ 0, 8 -+O 
( y is arbitrary). Consequently, the surface B contains the branch PI =Pa for a = 8 = 0. 

It can be verified that for p1 =p2 , a # 0, 8 # 0 the system of Eqs, (3.4) to (3.6) is not 
compatiable, i.e. the cylindrical section by the hyperplane p1 =pa representi (in the 

subspace y = 0) a single line a = 6 = 0, $71 =pa . This line is entirely stable, but stabi- 

lity is being considered with respect to the part of the variables a, 8, a’, 8’ , p1 and 

pg . In fact, taking into consideration that the gyroscopic forces [l] cannot upset stabi- 
lity, there follows from [9] that for such a stability of the stationary motion a = 8 = y =O , 

$21 =pa it is sufficient that the increment of Routh potential be a positive definite func- 

tion with respect to the part of the variables a, 8 (i.e. that it be sign definite and equal 

to zero if and only if Ct = 8 = 0 [S] ). It is easy to show that Routh’s potential (3.3) has 
that property. 

In view of the degenerateness of the matrix (3.2) for a = 8 = 0 , the entire plane n 
which is also stable corresponds to the invetiigated straight line in the domain m . 
Therefore the trivial branch of any cylindrical section in R9R is also stable, independ- 
ently of the presence on it of points of bifurcation. This refers particularly to the cylin- 
drical section by the hyperplane W,= 0 considered in @]. We can get the projection L; 
of this section on the subspace a&u, , by substituting (2.3) into (3.4) .and (3.5) for Wn = 0, 
y = 0 (it coincides with the curve (6) from @] up to the notations). The projection L * 

on the subspace clepl can be obtained by substituting p1 = all(;x3cul (see (2.5)) into 
the equation of the curve Lw*. Obviously L* has the same property as L,* , whereby the 

condition w,= 0 prescribes in RJ’ a noncylindrical section L . The principal feature of 
this phenomenon can be seen on Fig. 1 and 2 which are concerned with the simpler exam- 
ple (see Section 2). 
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